Q and H are at maximum efficiency for a given speed N, Q, is in cumec, H is in meters and N and N_s in r.p.m.

2. The work done by the pump in lifting Q cumecs of water by a head

\[H = wQH \]

where \(w = \) unit weight of water in kg/m^3
\(Q = \) discharge to be pumped in m^3/sec

3. The water horse power

\[\text{W.H.P.} = \frac{wQH}{75} \]

4. B.H.P. = \[\frac{\text{WHP}}{75\eta} = \frac{wQH}{75\eta} \]

Economic diameter of pipe, \(D = 0.97 \) to \(1.22 \sqrt{Q}. \)

WATER TREATMENT

1. \(V = \frac{Q}{BH} \)

where \(Q = \) discharge entering in basin
\(B = \) width of the basin
\(H = \) depth of water in tank.

2. \(V_s = \frac{Q}{BL} \)

3. Detention time \(t \) for a rectangular tank

\[t = \frac{BH}{Q} \]

4. Detention time for a circular tank

\[t = \frac{d^2 (0.011d + 0.785H)}{Q} \]

Frictional loss in pipe (\(h_f \));

\[h_f = \frac{f'IV^2}{2gd} \]

\(f' = \) coefficient of friction
\(l = \) Total length of pipe line

13. WATER AND WASTE

WATER QUALITY

1. \(Y_t = L \left[1 - (10)^{-k_D \cdot t} \right] \)

where \(Y_t \) is the oxygen absorbed in \(t \) days \(i.e. \) BOD of \(t \) days and \(L \) is the ultimate B.O.D.

\[K_D = \text{speed of BOD reaction}. \]

2. \(K_D(T^o) = K_D(20^o)^{1.0477 - 20^o} \)

\(K_D(20^o) = \text{deoxygenation constant at 20^oC} \)

\(K_D(T^o) = \text{deoxygenation constant at temperature T^oC} \)

3. Standard BOD (5 days) of industrial sewage

\(= \) standard BOD (5 days) of domestic sewage per person per day x population equivalent

The standard BOD of 5 days of domestic sewage is generally 0.08 kg/day/person.

\[\therefore \text{The population equivalent} = \frac{\text{total standard BOD (5 days) of city or industry in kg / day}}{0.08} \]

4. Relative stability,

\[S = 100 \left[1 - (0.794)^{(t/20)} \right] \]

\[S = 100 \left[1 - (0.630)^{(t/20)} \right] \]

5. BOD of sewage = loss of oxygen \times \text{dilution factor}

6. \[C = \frac{C_S Q_S + C_R Q_R}{Q_S + Q_R} \]

where \(C_S = \) concentration of sewage
\(Q_S = \) rate of sewage
\(C_R = \) concentration of river
\(Q_R = \) rate of flow of river

7. Oxygen deficit (\(D \))

\[= \text{saturation (DO) – actual (DO)} \]

8. \[D_t = \frac{K_D L}{K_R - K_D} (10)^{-k_D t} - (10)^{-k_R t} \]

\(+ \left[(D_0 \times (10)^{-k_R t}) \right] \]

where \(D_t = \) the DO deficit in mg/litre after \(t \) days
\(L = \) ultimate first stage BOD
\(D_o = \) initial oxygen deficit
\(D_D = \) de-oxygenation coefficient
\(K_R = \) re-oxygenation coefficient

\(K_R(T) = K_R(20^o)^{1.0167 - 20^o} \)

\(K_D(T) = K_D(T)^{1.0477 - 20^o} \)

9. Critical or maximum oxygen deficit,

\[D_C = \frac{K_D L}{K_R} (10)^{-k_D t} \]
where \(\frac{K_R}{K_D} = f \) (self purification factor)

10. \(t_c = \frac{1}{K_D (f - 1)} \log \left[\left(1 - (f - 1) \frac{D_c}{L} \right) f \right] \)

11. \(\left(\frac{1}{D_o f} \right)^{f - 1} = f \left[\left(1 - (f - 1) \frac{D_c}{L} \right) \right] \)

WATER AND WASTE WATER TREATMENT

1. Modified Shield formula for grit chamber;
 \[V_H = 3 \text{ to } 4.5 \sqrt{gd(S_s - 1)}. \]

2. Surface area required for skimming tank
 \[A = 0.00622 \frac{q}{V_r} \]
 \(q = \) rate of flow of sewage
 \(V_r = \) minimum rising velocity of greasy material
 = 0.25 m/minute

3. Modified Hazen’s equation for transmission zone;
 \[V_S = 60.6 (S_S - 1) d \left(\frac{3T + 70}{100} \right) \]
 For particles both 0.1 and 1 mm
 For inorganic solid, \(V_n = d(3T + 70) \)
 For organic solid, \(VS_{(O)} = 0.12 d(3T + 70) \)

4. \[V_S = \frac{Q}{BL} \]

5. Detention time \(t \) for rectangular tank
 \[= \frac{\text{volume of the tank}}{\text{rate of flow}} = \frac{BLH}{Q} \]

6. Detention period for a circular tank
 \[= d^2 (0.011d + 0.785H) \frac{Q}{Q} \]

7. \[V = V_1 \left[\frac{(100 - P_1)}{(100 - P)} \right] \]
 \(P_1 = \) certain moisture content of any sludge
 \(P = \) reduced moisture content
 \(V_1 = \) volume of sludge when moisture content = \(P_1 \)

\[V = \text{new volume at moisture content } P. \]

8. Capacity of digestion tank
 \[= \left[V_1 - \frac{2}{3} (V_1 - V_2) \right] \]
 \(V_1 = \) volume of raw sewage produced daily
 \(V_2 = \) equivalent volume of daily sludge
 \[= \frac{V_1}{3} \]
 \(t = \) digestion period in days

9. Efficiency of conventional trickling filter,
 \[\eta = \frac{100}{1 + 0.0044\sqrt{u}} \]
 \(u = \) organic loading in kg/ha-m/day.

10. Recirculation factor (High rate filters),
 \[F = \frac{1 + \frac{R}{I}}{\left[1 + 0.1 \frac{R}{I} \right]^2} \]
 \(R/I = \) recirculation ratio

11. Efficiency of single stage high rate trickling filter,
 \[\eta' = \frac{100}{1 + 0.0044\sqrt{u}} \]
 \(u = \) unit organic loading

12. Final efficiency of two stage filter
 \[\eta = \frac{100}{1 + \frac{0.044}{\sqrt{u}} \left(1 - \eta' \right).} \]

13. Aeration tank capacity,
 \[V = Q \frac{T}{24} \]
 \(Q = \) volume of flow of sewage in m³/day
 \(T = \) aeration period (4 to 8 hours).

14. Volumetric BOD loading = \(\frac{Q Y_0 (gm)}{V (m^3)} \)
 \(Y_0 = \) BOD₅ in mg/lt or gm/m³
 \(V = \) aeration tank volume.

15. Food (F) to micro-organism (M) ratio
 \[\frac{F}{M} \text{ ratio} = \frac{Q Y_0}{VX_t} \]
16. Total solid removal from the system per day
 \[Q_w X_R + (Q - Q_w) X_E \]
where \(Q_w \) = volume of wasted sludge per day
\(X_R \) = concentration of solid in return sludge
\(Q_1 \) = sewage inflow per day
\(X_E \) = concentration of solids in effluent in mg/litre

17. Sludge age, \(Q_x = \frac{V X_t}{Q_w X_R + (Q - Q_w) X_E} \)
\(X_t \) = concentration of solid in the reactor (MLSS).

18. Sludge volume Index (SVI) = \(\frac{V}{X} \) ml/mg.

19. Rate of return sludge,
 \[Q_R = Q \left[\frac{X_t}{10^6 \left(\frac{SVI}{X} - X_t \right)} \right] \]

20. Detention in days in oxidation pond
 \[= \frac{1}{K_D} \log_{10} \left(\frac{L}{L - Y} \right) \]
\(L = \text{BOD of effluent entering the pond} \)
\(Y = \text{BOD removal say 90 to 95\% of } L \).